A large multi-group decision-making technique for prioritizing the big data-driven circular economy practices in the automobile component manufacturing industry

نویسندگان

چکیده

The present study uses a large group decision-making technique to identify and rank the best big data-driven circular economy (BDDCE) practices in auto-component industry. data pertaining BDDCE were collected from decision-makers three groups, namely, purchasing, manufacturing, logistics & marketing function manufacturing First, consensus on within was ascertained followed by determining decision weights using percentage distributions subjective weights. This computing dominance degrees pairwise comparisons of ranking them PROMETHEE II method. findings indicated that more inclined towards enhancement internal supply chain integration most preferred highly ranked decisionmakers industry as compared focused improving supplier customer interfaces such green sale excess inventory, developing recycling systems for end-of-life products materials . high included minimization raw material consumption, plan reuse, recycle, recovery material, parts, reduction process waste at design stage.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prioritizing Rangeland Improvement Practices using Multi-Criteria Decision Making Approach

Selecting the appropriate rangeland improvement method is a challenging task for range managers because it requires consideration of  various criteria. This study was  aimed to evaluate various restoration and reclamation practices in the rangelands of Semirom-Isfahan using Multi-Criteria Decision Making (MCDM) methods. Grazing management, water point development, pit seeding, exclosure, water ...

متن کامل

Multicriteria Decision Making: A Case Study in the Automobile Industry

Multi-criteria decision analysis (MCDA) has been one of the fastest-growing areas of operations research during the last decades. The academic attention devoted to MCDA motivated the development of a great variety of approaches and methods within the field. These methods distinguish themselves in terms of procedures, theoretical assumptions and type of decision addressed. This diversity poses c...

متن کامل

application of brand personality scale in automobile industry: the study of samand’s brand personality dimensions

این تحقیق شخصیت برند سمند را در ایران با استفاده از مدل پنج بعدی آکر (1997) بعنوان یک چهارچوب بطور توصیفی سنجیده است. بنابر این چهارچوب که دراصل در 42 جزء (42 ویزگی شخصیتی) ودر پنج بعد شخصیتی طراحی شده بود ودر کشورها وصنایع مختلف آزموده شده بود, پرسنامه به زبان فارسی ترجمه شده و با استفاده از روشهای ترجمه معکوس و مصاحبه عمیق با 12 متخصص ایرانی به 38 جزء کاهش یافت. و نظرسنجی ای در پنج نمایندگی ا...

15 صفحه اول

Data in Action: Data-Driven Decision Making in U.S. Manufacturing

Manufacturing in America has become significantly more data-intensive. We investigate the adoption, performance effects and organizational complementarities of data-driven decision making (DDD) in the U.S. Using data collected by the Census Bureau for 2005 and 2010, we observe the extent to which manufacturing firms track and use data to guide decision making, as well as their investments in in...

متن کامل

Hybrid multi-criteria group decision-making for supplier selection problem with interval-valued Intuitionistic fuzzy data

The main objectives of supply chain management are reducing the risk of supply chain and production cost, increase the income, improve the customer services, optimizing the achievement level, and business processes which would increase ability, competency, customer satisfaction, and profitability. Further, the process of selecting the appropriate supplier capable of providing buyerchr('39')s re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Technological Forecasting and Social Change

سال: 2021

ISSN: ['0040-1625', '1873-5509']

DOI: https://doi.org/10.1016/j.techfore.2020.120567